
Cookbook/Summary for PDE

PDE Class of 2022

This is the summary/cookbook/ for the class PDE taught by Alden Waters in the academic year
2021-2022

As this is a collective project, if you plan to make use of it make sure to contribute as well.
If what you want to add doesn’t have a section yet feel free to add it.
It is probably best to have some theory/description and then some examples for each section/topic.
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1 Important Terminology and Definitions, Classifications

Types of PDE’s

Definition 1.1. A PDE is said to be linear if u and all its derivatives appear linearly in it, otherwise
it is said to be nonlinear

Definition 1.2. A nonlinear PDE is said to be quasilinear if the derivatives of principal order (the
highest order) occour only linearly with coefficients which may depend on derivatives of lower order.

Definition 1.3. A quasilinear PDE is said to be semilinear if the coefficients depend only on x
(explicitly) otherwise they are fully nonlinear.

Definition 1.4. We call a linear second order partial differential equation:

• eliptic at x0 if all eigenvalues of Apx0q have the same sign.

• parabolic at x0 if one or more eigenvalues of Apx0q vanish.

• hyperbolic at x0 if none of the eigenvalues of Apx0q vanish, and all but one have the same sign.

• ultrahyperbolic in all other cases.

Remark 1.5. This course is concerned primarly with linear 2d order PDE’s with the classifications
eliptic, parabolic and hyperbolic.
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2 Stationary, Transport and Traveling waves

Stationary waves

Transport equation

Definition 2.1. The transport equation is a linear, homogeneous first-order partial differential equa-
tion given as follows:

Bu

Bt
` c

Bu

Bx
“ 0

If we have an initial condition upt0, xq “ fpxq for all x P R, with f P C1 then we have a unique solution
to (2.1)

Proposition 2.2. (Proposition 2.1 in book) If upt, xq is a solution to the partial differential equation

ut ` cux “ 0

which is defined on all of R2, then
upt, xq “ vpx ´ ctq

where vpξq is a C1 function of the characteristic variable ξ “ x ´ ct.

Characteristic curves
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3 The Wave Equation

The wave equation

Definition 3.1. The wave equation is a linear, second order, homogeneous partial differential equation
given by:

utt “ c2uxx

d’Alembert’s formula

Theorem 3.2. (Theorem 2.15 in book) The solution to the initial value problem

B2u

Bt2
“ c2

B2u

Bx2
, up0, xq “ fpxq,

Bu

Bt
p0, xq “ gpxq, ´8 ă x ă 8,

is given by

upt, xq “
fpx ´ ctq ` fpx ` ctq

2
`

1

2c

ż x`ct

x´ct
gpzqdz

Note: for the above Thm to be a classical solution we need f P C2 and g P C1.

Examples 3.3.

Example 3.4.

Method of seperation of variables

If we take a look at the wave equation again, and try to find seperable solutions, i.e. upt, xq “ wptqvpxq,
plugging this in we get:

w2ptqvpxq “ c2wptqv2pxq

If we divide by vpxqwptq assuming that it is not 0 we get:

w2ptq

wptq
“ c2

v2pxq

vpxq
“ λ

This is two seperate ODE’s which we already know how to solve and give us the following possible
seperable solutions depending on λ.

λ wptq vpxq upt, xq “ wptqvpxq

λ “ ´ω2 ă 0 cosωt, sinωt cos ωx
c , sin ωx

c cosωt cos ωx
c , cosωt sin ωx

c , sinωt cos ωx
c , sinωt sin ωx

c
λ “ 0 1, t 1, x 1, x, t, tx

λ “ ω2 ą 0 e´ωt, eωt e´ωx{c, eωx{c e´ωpt`x{cq, eωpt´x{cq, e´ωpt´x{cq, eωpt`x{cq

Table 1: Seperable Solutions to the Wave Equation

Examples 3.5.

Example 3.6.

d’Alembert’s solution on bounded intervals

Examples 3.7.

Example 3.8.

4



4 Eigen solutions & Fourier Series

Rescaling a Fourier series

Convergence of Fourier series
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Remark 4.1. Note: According to the Prof, the heat equation will be on the final exam, but not on
the midterm.

5 The Heat Equation

Definition 5.1. The Heat Equation is given by:

ut “ ∇u “ uxx ` uyy

Remark 5.2. Note: The Heat equation is an example of a parabolic PDE, and is one of the main
equations for this course

The heated ring problem

The fundemental solution

The forced Heat Equation and Duhamel’s Principle

6



6 The Delta Function
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The Diffusion and Heat Equation

Dirichlet boundary conditions

Neumann boundary conditions

6.1 Robin boundary conditions
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Remark 6.1. The Prof highly reccommended reviewing the method of seperation of variables on
disks and rectangles before the midterm.

The Planar Laplace equation

Definition 6.2. The two-dimensional Laplace equation is the second-order linear partial differential
equation

uxx ` uyy “ 0

6.2 BDV rectangles

To solve Laplace’s equation, we try the method of sepearation of variables upx, tq “ vpxqwpyq and plug
it into our equation, this gives:

v2pxqwpyq ` w2pyqvpxq “ 0

Assuming that vpxqwpyq ‰ 0 we divide and get

v2pxq

vpxq
“ ´

w2pyq

wpyq
“ λ

where since one is a function of y and one is a function of x we have that λ is a constant. This gives
us two ODE’s which when we solve give the following separable solutions

λ wpyq vpxq upt, xq “ wptqvpxq

λ “ ´ω2 ă 0 e´ωy, eωy cosωx, sinωx eωy cosωx, eωy sinωx, e´ωy cosωx, e´ωy sinωx
λ “ 0 1, y 1, x 1, x, y, xy

λ “ ω2 ą 0 cosωy, sinωy e´ωx, eωx eωx cosωy, eωx sinωy, e´ωx cosωy, e´ωx sinωy

Table 2: Seperable Solutions to Laplace’s Equation

Example 6.3. 4.3.11. (a) Explain how to use lienar superposition to solve the boundary value problem

∇u “ 0, upx, 0q “ fpxq, upx, bq “ gpxq, up0, yq “ hpyq, upa, yq “ kpyq

on the rectangle R “ 0 ă x ă a, 0 ă y ă b by splitting it into four seperate boundary value problems
for which each of the solutions vanishes on three sides of the rectangle.

The four separate boundary value problems are given by ∇u “ 0 and for each side separately
one non-zero boundary condition. The total solution is the sum of the solutions to each seperate
boundary value problem.

(b) Write down a series formula for the resulting solution.

First we solve each individual BVP we start with the one given by upx, 0q “ fpxq. This implies
that up0, yq “ 0, upa, yq “ 0, upx, bq “ 0

The initial conditions up0, yq “ 0 “ upa, yq imply that vpxq “ sinpωxq and ω “ nπ{a, with
n P Zą0 (Note: negative n is just a constant multiple of the positive n and so they are not unique
solutions).

Since λ “ ´ω2 “ ´n2π2

a2
ă 0 we have that wpyq “ c1e

´ωy ` c2e
ωy as we have upx, bq “ 0,

this implies that wpbq “ 0 using this gives c1 “ eωb, c2 “ ´e´ωb, and simplifying slightly, wpyq “

sinhpωpb ´ yqq. Thus the seperable solutions are given by:

sinpnπ{axq sinhpnπpb ´ yq{aq
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Finally upx, 0q “ fpxq implies that we have:

fpxq “

8
ÿ

k“1

ck sinpkπx{aq sinhpkπb{aq

which implies that we can calculate ck from the fourier series for fpxq as follows:

ck “
1

sinhpkπb{aq

2

a

ż a

0
fpxq sinpkπx{aq

And the solution upx, yq is given by

upx, yq “

8
ÿ

k“1

ck sinpkπx{aq sinhpkπpb ´ aq{aq

with ck as above.
Now we do the same for up0, yq “ hpyq which gives us upx, 0q “ 0, upx, bq “ 0, upa, yq “ 0.
The initial conditions upx, 0q “ 0 “ upx, bq implies that wpyq “ sinpωyq and ω “ nπ{b with

n P Zą0. As we are in the case λ ą 0 this implies that vpxq “ c1e
´ωx ` c2e

ωx, using upa, yq “ 0
implies that c1 “ eωb and c2 “ e´ωb

The Poisson Equation

Definition 6.4. The forced Laplace equation or Poisson’s equation is given by:

´∇rus “ ´uxx ´ uyy “ fpx, yq
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7 Green’s Function

Green’s Functions are defined as

Green’s Functions for One-Dimensional Boundary Value Problems

For second-order linear ordinary differential equations

Lrus “ ppxq
d2u

dx2
` qpxq

du

dx
` rpxqupxq “ fpxq

with a pair of homogeneous boundary conditions at the ends of the interval ra, bs, and p, q, r, f continous
and ppxq ‰ 0 for all x P ra, bs. the properties of the Green’s Function Gpx; ξq are as follows:

Let Ω be the domain, and Lrus “ f with u|BΩ “ 0. Then the Green’s functions satisfy the following
properties

• LrGpx, ξqs “ δpx ´ ξq

• Gpx, ξq is continuous in Ω

• Gpx, ξq satisfies the homogeneous boundary conditions

• BG{Bx is piecewise C 1 with a single jump discontinuity of magnitude 1{ppξq at the impulse point
x “ ξ

Green’s Functions for the Planar Poisson Equation

Green’s Functions and Convulation
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8 Fourier Transform
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The maximum principle

Definition 8.1. Let Ω be a bounded open connected domain. A function u P C2pΩq X CpΩ̄q is said
to be subharmonic if ´∆u ď 0 in Ω, superharmonic if ´∆u ě 0 in Ω

Notes about the final exam

The professor has said that there will be 4 questions on the final exam.
2. Heat equation with separation of variables 3. Green’s function 4. A repeat from an old exam.
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