Cookbook/Summary for PDE

PDE Class of 2022

This is the summary/cookbook/ for the class PDE taught by Alden Waters in the academic year 2021-2022

As this is a collective project, if you plan to make use of it make sure to contribute as well. If what you want to add doesn't have a section yet feel free to add it.

It is probably best to have some theory/description and then some examples for each section/topic.

Contents

1	Important Terminology and Definitions, Classifications				
2	Stationary, Transport and Traveling waves				
3	The Wave Equation	4			
4	Eigen solutions & Fourier Series				
5	The Heat Equation	6			
6	The Delta Function 6.1 Robin boundary conditions 6.2 BDV rectangles	7 8 9			
7	Green's Function	11			
8	Fourier Transform	12			

1 Important Terminology and Definitions, Classifications

Types of PDE's

Definition 1.1. A PDE is said to be **linear** if u and all its derivatives appear linearly in it, otherwise it is said to be **nonlinear**

Definition 1.2. A nonlinear PDE is said to be **quasilinear** if the derivatives of principal order (the highest order) occour only linearly with coefficients which may depend on derivatives of lower order.

Definition 1.3. A quasilinear PDE is said to be **semilinear** if the coefficients depend only on x (explicitly) otherwise they are **fully nonlinear**.

Definition 1.4. We call a linear second order partial differential equation:

- eliptic at x_0 if all eigenvalues of $A(x_0)$ have the same sign.
- **parabolic** at x_0 if one or more eigenvalues of $A(x_0)$ vanish.
- hyperbolic at x_0 if none of the eigenvalues of $A(x_0)$ vanish, and all but one have the same sign.
- ultrahyperbolic in all other cases.

Remark 1.5. This course is concerned primarly with linear 2d order PDE's with the classifications eliptic, parabolic and hyperbolic.

2 Stationary, Transport and Traveling waves

Stationary waves

Transport equation

Definition 2.1. The transport equation is a linear, homogeneous first-order partial differential equation given as follows:

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0$$

If we have an initial condition $u(t_0, x) = f(x)$ for all $x \in \mathbb{R}$, with $f \in C^1$ then we have a unique solution to (2.1)

Proposition 2.2. (Proposition 2.1 in book) If u(t, x) is a solution to the partial differential equation

$$u_t + cu_x = 0$$

which is defined on all of \mathbb{R}^2 , then

$$u(t,x) = v(x - ct)$$

where $v(\xi)$ is a C^1 function of the characteristic variable $\xi = x - ct$.

Characteristic curves

3 The Wave Equation

The wave equation

Definition 3.1. The wave equation is a linear, second order, homogeneous partial differential equation given by:

$$u_{tt} = c^2 u_{xx}$$

d'Alembert's formula

Theorem 3.2. (Theorem 2.15 in book) The solution to the initial value problem

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}, \quad u(0,x) = f(x), \quad \frac{\partial u}{\partial t}(0,x) = g(x), \quad -\infty < x < \infty,$$

is given by

$$u(t,x) = \frac{f(x-ct) + f(x+ct)}{2} + \frac{1}{2c} \int_{x-ct}^{x+ct} g(z)dz$$

Note: for the above Thm to be a classical solution we need $f \in C^2$ and $g \in C^1$.

Examples 3.3.

Example 3.4.

Method of seperation of variables

If we take a look at the wave equation again, and try to find separable solutions, i.e. u(t, x) = w(t)v(x), plugging this in we get:

$$w''(t)v(x) = c^2w(t)v''(x)$$

If we divide by v(x)w(t) assuming that it is not 0 we get:

$$\frac{w''(t)}{w(t)} = c^2 \frac{v''(x)}{v(x)} = \lambda$$

This is two separate ODE's which we already know how to solve and give us the following possible separable solutions depending on λ .

λ	w(t)	v(x)	u(t,x) = w(t)v(x)
$\lambda = -\omega^2 < 0$	$\cos \omega t, \sin \omega t$	$\cos \frac{\omega x}{c}, \sin \frac{\omega x}{c}$	$\cos \omega t \cos \frac{\omega x}{c}, \cos \omega t \sin \frac{\omega x}{c}, \sin \omega t \cos \frac{\omega x}{c}, \sin \omega t \sin \frac{\omega x}{c}$
$\lambda = 0$	1, t	1, x	1,x,t,tx
$\lambda=\omega^2>0$	$e^{-\omega t}, e^{\omega t}$	$e^{-\omega x/c}, e^{\omega x/c}$	$e^{-\omega(t+x/c)}, e^{\omega(t-x/c)}, e^{-\omega(t-x/c)}, e^{\omega(t+x/c)}$

Table 1: Seperable Solutions to the Wave Equation

Examples 3.5.

Example 3.6.

d'Alembert's solution on bounded intervals

Examples 3.7.

Example 3.8.

4 Eigen solutions & Fourier Series

Rescaling a Fourier series Convergence of Fourier series **Remark 4.1.** Note: According to the Prof, the heat equation will be on the final exam, but not on the midterm.

5 The Heat Equation

Definition 5.1. The Heat Equation is given by:

 $u_t = \nabla u = u_x x + u_y y$

Remark 5.2. Note: The Heat equation is an example of a parabolic PDE, and is one of the main equations for this course

The heated ring problem

The fundemental solution

The forced Heat Equation and Duhamel's Principle

6 The Delta Function

The Diffusion and Heat Equation

Dirichlet boundary conditions

Neumann boundary conditions

6.1 Robin boundary conditions

Remark 6.1. The Prof highly reccommended reviewing the method of seperation of variables on disks and rectangles before the midterm.

The Planar Laplace equation

Definition 6.2. The two-dimensional **Laplace equation** is the second-order linear partial differential equation

$$u_{xx} + u_{yy} = 0$$

6.2 BDV rectangles

To solve Laplace's equation, we try the method of sepearation of variables u(x,t) = v(x)w(y) and plug it into our equation, this gives:

$$v''(x)w(y) + w''(y)v(x) = 0$$

Assuming that $v(x)w(y) \neq 0$ we divide and get

$$\frac{v''(x)}{v(x)} = -\frac{w''(y)}{w(y)} = \lambda$$

where since one is a function of y and one is a function of x we have that λ is a constant. This gives us two ODE's which when we solve give the following separable solutions

λ	w(y)	v(x)	u(t,x) = w(t)v(x)
$\lambda = -\omega^2 < 0$	$e^{-\omega y}, e^{\omega y}$	$\cos\omega x, \sin\omega x$	$e^{\omega y}\cos\omega x, e^{\omega y}\sin\omega x, e^{-\omega y}\cos\omega x, e^{-\omega y}\sin\omega x$
$\lambda = 0$	1,y	1, x	1,x,y,xy
$\lambda = \omega^2 > 0$	$\cos \omega y, \sin \omega y$	$e^{-\omega x}, e^{\omega x}$	$e^{\omega x}\cos\omega y, e^{\omega x}\sin\omega y, e^{-\omega x}\cos\omega y, e^{-\omega x}\sin\omega y$

Table 2: Seperable Solutions to Laplace's Equation

Example 6.3. 4.3.11. (a) Explain how to use lienar superposition to solve the boundary value problem

$$\nabla u = 0, \quad u(x,0) = f(x), \quad u(x,b) = g(x), \quad u(0,y) = h(y), \quad u(a,y) = k(y)$$

on the rectangle R = 0 < x < a, 0 < y < b by splitting it into four separate boundary value problems for which each of the solutions vanishes on three sides of the rectangle.

The four separate boundary value problems are given by $\nabla u = 0$ and for each side separately one non-zero boundary condition. The total solution is the sum of the solutions to each separate boundary value problem.

(b) Write down a series formula for the resulting solution.

First we solve each individual BVP we start with the one given by u(x, 0) = f(x). This implies that u(0, y) = 0, u(a, y) = 0, u(x, b) = 0

The initial conditions u(0, y) = 0 = u(a, y) imply that $v(x) = \sin(\omega x)$ and $\omega = n\pi/a$, with $n \in \mathbb{Z}_{>0}$ (Note: negative *n* is just a constant multiple of the positive *n* and so they are not unique solutions).

Since $\lambda = -\omega^2 = -\frac{n^2 \pi^2}{a^2} < 0$ we have that $w(y) = c_1 e^{-\omega y} + c_2 e^{\omega y}$ as we have u(x,b) = 0, this implies that w(b) = 0 using this gives $c_1 = e^{\omega b}, c_2 = -e^{-\omega b}$, and simplifying slightly, $w(y) = \sinh(\omega(b-y))$. Thus the separable solutions are given by:

 $\sin(n\pi/ax)\sinh(n\pi(b-y)/a)$

Finally u(x,0) = f(x) implies that we have:

$$f(x) = \sum_{k=1}^{\infty} c_k \sin(k\pi x/a) \sinh(k\pi b/a)$$

which implies that we can calculate c_k from the fourier series for f(x) as follows:

$$c_k = \frac{1}{\sinh(k\pi b/a)} \frac{2}{a} \int_0^a f(x) \sin(k\pi x/a)$$

And the solution u(x, y) is given by

$$u(x,y) = \sum_{k=1}^{\infty} c_k \sin(k\pi x/a) \sinh(k\pi (b-a)/a)$$

with c_k as above.

Now we do the same for u(0, y) = h(y) which gives us u(x, 0) = 0, u(x, b) = 0, u(a, y) = 0. The initial conditions u(x, 0) = 0 = u(x, b) implies that $w(y) = \sin(\omega y)$ and $\omega = n\pi/b$ with $n \in \mathbb{Z}_{>0}$. As we are in the case $\lambda > 0$ this implies that $v(x) = c_1 e^{-\omega x} + c_2 e^{\omega x}$, using u(a, y) = 0 implies that $c_1 = e^{\omega b}$ and $c_2 = e^{-\omega b}$

The Poisson Equation

Definition 6.4. The forced Laplace equation or Poisson's equation is given by:

$$-\nabla[u] = -u_{xx} - u_{yy} = f(x, y)$$

7 Green's Function

Green's Functions are defined as

Green's Functions for One-Dimensional Boundary Value Problems

For second-order linear ordinary differential equations

$$L[u] = p(x)\frac{d^{2}u}{dx^{2}} + q(x)\frac{du}{dx} + r(x)u(x) = f(x)$$

with a pair of homogeneous boundary conditions at the ends of the interval [a, b], and p, q, r, f continuus and $p(x) \neq 0$ for all $x \in [a, b]$. the properties of the Green's Function $G(x; \xi)$ are as follows:

Let Ω be the domain, and L[u] = f with $u|_{\partial\Omega} = 0$. Then the Green's functions satisfy the following properties

- $L[G(x,\xi)] = \delta(x-\xi)$
- $G(x,\xi)$ is continuous in Ω
- $G(x,\xi)$ satisfies the homogeneous boundary conditions
- $\partial G/\partial x$ is piecewise C' with a single jump discontinuity of magnitude $1/p(\xi)$ at the impulse point $x = \xi$

Green's Functions for the Planar Poisson Equation

Green's Functions and Convulation

8 Fourier Transform

The maximum principle

Definition 8.1. Let Ω be a bounded open connected domain. A function $u \in C^2(\Omega) \cap C(\overline{\Omega})$ is said to be <u>subharmonic</u> if $-\Delta u \leq 0$ in Ω , superharmonic if $-\Delta u \geq 0$ in Ω

Notes about the final exam

The professor has said that there will be 4 questions on the final exam.

2. Heat equation with separation of variables 3. Green's function 4. A repeat from an old exam.